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Abstract

Multi-task learning (MTL) is a machine learning paradigm
that improves the performance of each task by exploiting
useful information contained in multiple related tasks. How-
ever, the relatedness of tasks can be exploited by attackers to
launch data poisoning attacks, which has been demonstrated
a big threat to single-task learning. In this paper, we provide
the first study on the vulnerability of MTL. Specifically, we
focus on multi-task relationship learning (MTRL) models, a
popular subclass of MTL models where task relationships are
quantized and are learned directly from training data. We for-
mulate the problem of computing optimal poisoning attacks
on MTRL as a bilevel program that is adaptive to arbitrary
choice of target tasks and attacking tasks. We propose an ef-
ficient algorithm called PATOM for computing optimal attack
strategies. PATOM leverages the optimality conditions of the
subproblem of MTRL to compute the implicit gradients of the
upper level objective function. Experimental results on real-
world datasets show that MTRL models are very sensitive to
poisoning attacks and the attacker can significantly degrade
the performance of target tasks, by either directly poisoning
the target tasks or indirectly poisoning the related tasks ex-
ploiting the task relatedness. We also found that the tasks be-
ing attacked are always strongly correlated, which provides a
clue for defending against such attacks.

Introduction
The security of machine learning algorithms has become a
great concern in many real-world applications involving ad-
versaries. The threats to machine learning systems can be
classified as two kinds: exploratory attacks where attack-
ers modify test examples in order to make machine learn-
ing algorithms produce erroneous outputs (Li and Vorobey-
chik 2014; Biggio et al. 2013), and causative attacks (a.k.a
poisoning attacks) where attackers manipulate training ex-
amples to subvert the learned model (Barreno et al. 2010;
Biggio, Nelson, and Laskov 2012; Xiao et al. 2015). Poi-
soning attacks usually occur when training data is collected
from public sources (e.g., Internet users) and can be very
harmful due to its long-lasting effect on the learned model.
Studying poisoning attacks provides deep understanding of
how well machine learning performs in adversarial training
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environment, which is critical for improving the robustness
of real-world machine learning systems.

In this paper, we formally analyze optimal poisoning at-
tacks on multi-task learning (MTL) models, where multiple
tasks are learned jointly to achieve better performance than
single-task learning (Zhang and Yang 2017). Specifically,
we focus on multi-task relationship learning (MTRL) mod-
els, a popular subclass of MTL models where task relation-
ships are quantized and are learned directly from training
data (Zhang and Yeung 2010; Liu, Pan, and Ho 2017). Many
MTL-based machine systems collect training data from in-
dividual users to provide personalized services, including
collaborative spam filtering and personalized recommenda-
tions, which makes them vulnerable to poisoning attacks
launched by cyber criminals. For example, in an MTL-based
recommender system, attackers can control a considerable
number of user accounts either by hacking existing user ac-
counts or creating fictitious user accounts.

Previous works on poisoning attacks focus on single-task
learning (STL) models, including support vector machines
(Biggio, Nelson, and Laskov 2012), autoregressive models
(Alfeld, Zhu, and Barford 2016) and factorization-based col-
laborative filterings (Li et al. 2016). However, none of them
studies poisoning attacks on MTL models. Computing op-
timal poisoning attacks on MTL models can be much more
challenging than on STL models, because MTL tasks are
related with each other and an attack on one task might po-
tentially influence other tasks. This also opens a door for
the attacker to attack some accessible tasks and indirectly
influence the unaccessible target tasks, which cannot be ad-
dressed by existing methods on poisoning STL models.

The major contributions of our work are threefold. First,
we formulate the optimal poisoning attack problem on
MTRL as a bilevel program that is adaptive to any choice
of target tasks and attacking tasks. Second, we develop a
stochastic gradient ascent based algorithm called PATOM
for solving the optimal attack problem, where the gradi-
ents are computed based on the optimality conditions of the
convex subproblem of MTRL. Third, we demonstrate ex-
perimentally that MTRL is very sensitive to data poisoning
attacks. The attacker can significantly degrade the perfor-
mance of target tasks, by either directly poisoning the tar-
get tasks or indirectly poisoning the related tasks. Moreover,
we study the change of task relationships under attacks and



found that the attacking tasks usually have strong local cor-
relations, which suggests that a group of strongly correlated
tasks could be dangerous to the learner.

Related Work
Data poisoning attacks against machine learning algorithms
have become an important research topic in adversarial ma-
chine learning (Barreno et al. 2006; Huang et al. 2011;
Kloft and Laskov 2010; Lowd and Meek 2005). The first
work that provides formal study of poisoning attacks inves-
tigates the vulnerability of support vector machines, where
an attacker progressively injects malicious data points to
the training set in order to maximize the classification er-
ror (Biggio, Nelson, and Laskov 2012). Xiao et al.(2015)
study poisoning attacks on feature selection algorithms and
propose an algorithm that repeatedly optimizing the injected
data until convergence. Mei and Zhu (2015b) propose an al-
gorithmic framework for computing training set attacks. Re-
cently, poisoning attacks have been analyzed on many im-
portant machine learning algorithms, including autoregres-
sive models (Alfeld, Zhu, and Barford 2016), latent Dirichlet
allocation (Mei and Zhu 2015a), and matrix factorization-
based collaborative filtering (Li et al. 2016). However, exist-
ing works focus only on STL models and the vulnerability
of MTL models is left to be explored.

Another line of research related to our work is MTL,
which has been extensively studied in the literature. In
general, MTL can be categorized into four classes: fea-
ture learning approaches, low-rank approaches, task clus-
tering approaches, and task relationship approaches. Fea-
ture learning approaches aim to learn a common shared
feature space among multiple tasks to boost the learning
performance of each task (Argyriou, Evgeniou, and Pon-
til 2007). Low-rank approaches assume that the model pa-
rameters of different tasks share a low-rank structure, and
discovery of such a low-rank structure could help learn-
ing a more precise model for each task (Ando and Zhang
2005). Task clustering approaches assume that different
tasks form several task-clusters, each of which consists of
similar tasks (Thrun and O’Sullivan 1996). Task relationship
learning aims to quantify and learn task relationship auto-
matically from data, such that knowledge can be transferred
among related tasks (Zhang and Yeung 2010). However, as
we discussed, the vulnerability of MTL has never been stud-
ied. In this work, we fill the gap by investigating the vulner-
ability of task relationship learning approaches, which have
proven to be effective in MTL.

Multi-Task Relationship Learning
We denote by T = {Ti}mi=1 the set of learning tasks. For
each task Ti, we are given a set of training data Di =
{(xi

j , y
i
j)|xi

j ∈ Rd, j = 1, ..., ni}. The label yij ∈ R if
the task is a regression task and yij ∈ {−1,+1} if the
task is a binary classification task. Note that a multi-class
classification problem can be easily decomposed to a set
of binary classification problems using the one-vs-the-rest
strategy (Fan et al. 2008). The goal of MTL is to jointly
learn a prediction function fi(x) for each task. In this pa-

per, we consider linear prediction functions where fi(x) =
(wi)>x + bi, but note that it is easy to extend to non-
linear cases using kernel methods. For the ease of represen-
tation, we denote (x, 1) by x and denote (w, b) by w so that
fi(x) = (wi)>x.

We consider a general multi-task relationship learning
(MTRL) formulation (Zhang and Yeung 2010) as follows,
which includes many existing popular MTL methods as
its special cases (Evgeniou, Micchelli, and Pontil 2005;
Evgeniou and Pontil 2004; Jacob, Vert, and Bach 2009;
Kato et al. 2008).

min
W,Ω

m∑
i=1

1

ni

ni∑
j=1

l((wi)>xi
j , y

i
j) +

λ1
2

tr(WW>)

+
λ2
2

tr(WΩ−1W>), (1)

s.t. Ω � 0, tr(Ω) = 1,

where l(·) is an arbitrary convex loss function, W is a ma-
trix whose i-th column wi is the weight vector of task Ti,
Ω ∈ Rm×m is the covariance matrix that describes posi-
tive, negative and unrelated task relationships. The first term
in the objective function measures the empirical loss of all
tasks with the term 1/ni to balance the different sample sizes
of tasks. The second term in the objective function is to pe-
nalize the complexity of W, and the last term serves as the
task-relationship regularization term. The first constraint en-
sures that the covariance matrix Ω is positive semi-definite,
and the second constraint controls its complexity.

Data Poisoning Attacks on MTRL
In this section, we introduce the problem settings for the data
poisoning attack on MTRL. We define three kinds of attacks
based on real-world scenarios and propose a bilevel formu-
lation for computing optimal attacks.

We assume that the attacker aims to degrade the per-
formance of a set of target tasks Ttar ⊂ T by injecting
data to a set of attacking tasks Tatt ⊂ T . We denote by
D̂i = {(x̂i

j , ŷ
i
j)|x̂i

j ∈ Rd, j = 1, ..., n̂i} the set of malicious
data injected to task i. Specially, D̂i = ∅, i.e., n̂i = 0, if
Ti 6∈ Tatt. We define and study the following three kinds of
attacks based on real-world scenarios.

• Direct attack: Ttar = Tatt. Attacker can directly inject
data to all the target tasks. For example, in product review
sentiment analysis, each task is a sentiment classification
task that classifies a review as negative or positive. On
e-commerce platforms such as Amazon, attackers can di-
rectly attack the target tasks by providing crafted reviews
to the target products.

• Indirect attack: Ttar ∩ Tatt = ∅. Attacker cannot inject
data to any of the target tasks. However, he can inject data
to other tasks and indirectly influence the target tasks. For
example, personalized recommendations treat each user
as a task and use users’ feedback to train personalized rec-
ommendation models. In such scenarios, attackers usually
cannot access the training data of target tasks. However,



attackers can launch indirect attacks by faking some ma-
licious user accounts, which will be treated as attacking
tasks, and providing crafted feedback to the systems.

• Hybrid attack: A mixture of direct attack and indirect at-
tack where the attacker can inject data to both target tasks
and attacking tasks.

We denote by L(D,w) =
∑|D|

k=1 l(w
>xk, yk) the em-

pirical loss incurred by weight vector w on data set D, and
define the attacker’s utility function as the empirical loss on
training data of the target tasks:

U =
∑
{i|Ti∈Ttar} L(Di,w

i).

Following the Kerckhoffs’ principle (Kahn 1998) and exist-
ing works on poisoning attacks (Biggio, Nelson, and Laskov
2012; Li et al. 2016), we assume that the attacker has full
knowledge of the victim MTRL model. In reality, attack-
ers can either obtain the knowledge of victim models by ex-
ploiting insider threats (Greitzer et al. 2008) or probing the
machine learning systems by sending queries from the out-
side (Lowd and Meek 2005). We then formulate the optimal
attack problem as the following bilevel optimization prob-
lem. Problem (2) is the upper level problem, in which the
objective function is the attacker’s utility U . The variables
of the upper level problem are the injected data points D̂i,
which are usually constrained in real-world scenarios. For
example, the injected data should have similar scale with
the clean data. The lower level problem (Problem (3)) is
an MTRL problem with training set consists of both clean
and injected data points. The lower level problem can be re-
garded as the constraint of the upper level problem. In other
words, the variables W used for computing the objective of
Problem (2) should be the optimal solution of the lower level
problem.

max
{D̂i|Ti∈Tatt}

∑
{i|Ti∈Ttar}

L(Di,w
i), (2)

s.t. Constraints on {D̂i|Ti ∈ Tatt},

min
W,Ω

m∑
i′=1

1

ni′+n̂i′
L(Di′ ∪ D̂i′ ,w

i′)

+
λ1
2

tr(WW>)+
λ2
2

tr(WΩ−1W>),

(3)
s.t. Ω � 0, tr(Ω) = 1.

Computing Optimal Attack Strategies
In this section, we propose an algorithm called PATOM for
computing optimal attack strategies. PATOM is a projected
stochastic gradient ascent based algorithm that efficiently
maximizes the injected data in the direction of increasing the
empirical loss of target tasks. Since there is no close-form
relation between the empirical loss and the injected data, we
compute the gradients exploiting the optimality conditions
of the subproblem of MTRL.

General Optimization Framework
Bilevel problems are usually hard to solve due to their
non-linearity, non-differentiability and non-convexity. In our
bilevel formulation, although the upper level problem (2)
is relatively simple, the lower level problem (3) is highly
non-linear and non-convex. Inspired by (Li et al. 2016;
Mei and Zhu 2015b; Xiao et al. 2015; Zhao et al. 2017),
we use a projected gradient ascent method to solve our pro-
posed bilevel problem. The idea is to iteratively update the
injected data in the direction of maximizing the attacker’s
utility function U . In order to reduce the complexity of the
optimal attack problem, we fix the labels of injected data ŷij
and optimize over the features of injected data x̂i

j . The up-
date rule is written as follows,

(x̂i
j)

t ← ProjX((x̂i
j)

t−1 + η∇(x̂i
j)

t−1U), (4)

where η is the step size, t denotes the t-th iteration, and
X represents the feasible region of the injected data, which
is specified by the first constraint in the upper level prob-
lem (2). We consider X as an `2-norm ball with diameter r.
Therefore, ProjX can be represented by:

ProjX(x) =

{
x, if ||x||2 ≤ r,
xr
||x||2 , if ||x||2 > r.

In order to compute the gradients ∇(x̂i
j)

t−1U , we first apply
the chain rule to arrive at

∇(x̂i
j)
U = ∇WU · ∇(x̂i

j)
W. (5)

However, note that U is the sum of losses incurred by ev-
ery point in the target tasks, the first term on the right side
could be computationally expensive if the number of data
points in target tasks is large. Therefore, we instead pro-
pose a projected stochastic gradient ascent based algorithm,
called PATOM, to improve the scalability of our approach.

The details of PATOM is shown in Algorithm 1. We first
randomly initialize the injected data D̂i within the `2-norm
ball with diameter r. Using the injected data, we solve the
MTRL problem (the lower level problem (3)), and obtain
the initial values of the weight matrix W0 and the covari-
ance matrix Ω0. In each iteration, we perform a projected
stochastic gradient ascent procedure steps (7-10) on all the
injected data. Specifically, for each data point (xp

q ,y
p
q ) sam-

pled from Dbatch, we compute the gradients of its associate
loss l((wp

t )>xp
q ,y

p
q ) with respect to each injected data x̂i

j .
Therefore, by replacing U in (4) with l((wp

t )>xp
q ,y

p
q ) we

have the stochastic version of the update rule as shown in (6).
Then, with the updated injected data D̂i = D̂t

i , we solve the
lower level problem (3) again to obtain a new weight matrix
Wt and a new covariance matrix Ωt, which will be used in
the next iteration.
(x̂i

j)
t ← ProjX((x̂

i
j)

t−1+η∇(x̂i
j)

t−1 l((w
p
t−1)

>xp
q ,y

p
q )). (6)

Gradients Computation
In order to compute the gradients ∇(x̂i

j)
l((wp)>xp

q ,y
p
q )

in (6), we still apply the chain rule and obtain:

∇x̂i
j
l((wp)>xp

q ,y
p
q ) = ∇wp l((wp)>xp

q ,y
p
q ) · ∇x̂i

j
wp. (7)



Algorithm 1: computing Poisoning ATtacks On
Multi-task relationship learning (PATOM)

1 Input: Ttar, Tatt, step size η, attacker budget n̂i.
2 Randomly initialize

D̂0
i = {((x̂i

j)
0, (ŷij)

0)|j = 1, ..., n̂i},∀i ∈ Tatt.
3 D̂i = D̂0

i , ,∀i ∈ Tatt.
4 Solve lower level problem (3) to obtain W0 and Ω0.
5 t← 1.
6 while t < tmax do
7 Sample a batch Dbatch from ∪i∈TtarDi.
8 for (xp

q ,y
p
q ) ∈ Dbatch do

9 for i ∈ Tatt, j = 1...n̂i do
10 Update (x̂i

j)
t according to (6).

11 D̂i = D̂t
i ,∀i ∈ Tatt.

12 Solve (3) to obtain Wt and Ωt.
13 t← t+ 1.

We can see that the first term on the right side depends
only on the loss function l(·) and is relatively easy to com-
pute. However, the second term on the right side depends
on the optimality conditions of lower level problem (3). In
the rest of this section, we show how to compute the gradi-
ents with respect to two commonly used loss functions. For
regression tasks, we adopt least-square loss: l1(w>x, y) =
(y−w>x)2. For classification tasks, we adopt squared hinge
loss: l2(w>x, y) = (1−yw>x)2.

We first fix Ω to eliminate the constraints of the lower
level problem (3), and obtain the following sub-problem:

min
W

m∑
i=1

1

ni+n̂i
L(Di ∪ D̂i,w

i)+
λ1
2

tr(WW>)

+
λ2
2

tr(WΩ−1W>). (8)

As shown in (Zhang and Yeung 2010), MTRL problems can
be solved by an alternating approach with Ω and W alter-
natingly fixed in each iteration. Also note that in bilevel op-
timization, the optimality of the lower level problem can
be considered as a constraint to the upper level problem.
Therefore, at convergence, we can treat Ω in Problem (8)
as a constant-value matrix when computing the gradients.
We then substitute the least-square loss function l1(·) into
Problem (8) and reformulate it as the following constrained
optimization problem:

min
W

m∑
i=1

1

ni+n̂i

 ni∑
j=1

(εij)
2+

n̂i∑
j′=1

(ε̂ij)
2

+
λ1

2
tr(WW>)

+
λ2

2
tr(WΩ−1W>), (9)

s.t. εij = yij − (wi)>xi
j , ∀i, j,

ε̂ij′ = ŷij′ − (wi)>x̂i
j′ , ∀i, j′.

The Lagrangian of the problem (9) is:

G =

m∑
i=1

1

ni+n̂i

 ni∑
j=1

(εij)
2+

n̂i∑
j=1

(ε̂ij)
2

+
λ1
2

tr(WW>)

+
λ2
2

tr(WΩ−1W>)

+

m∑
i=1

 ni∑
j=1

αi
j

(
yij − (wi)>xi

j − εij
)

+

n̂i∑
j′=1

α̂i
j′(ŷ

i
j′ − (wi)>x̂i

j′ − ε̂ij′)

 . (10)

The gradient of G with respect to W is:

∂G

∂W
= W(λ1Im + λ2Ω

−1)

−
m∑
i=1

 ni∑
j=1

αi
jx

i
je
>
i +

n̂i∑
j′=1

α̂i
j′ x̂

i
j′e
>
i

 . (11)

where Im ism×m identity matrix, and ei is the i-th column
of Im. By setting ∂G

∂W = 0, we obtain:

W=

m∑
i=1

 ni∑
j=1

αi
jx

i
j+

n̂i∑
j′=1

α̂i
j′ x̂

i
j′

 e>i Ω(λ1Ω+λ2In)
−1

 ,

(12)
which implies that each task’s weight vector wi can be rep-
resented as a linear combination of training data from all
tasks. For simplicity in presentation, we denote by Φ =
Ω(λ1Ω+λ2In)−1, and reexpress (12) as the following form:

wp =

m∑
i=1

Φi,p

 ni∑
j=1

αi
jx

i
j +

n̂i∑
j′=1

α̂i
j′ x̂

i
j′

 , p = 1...m.

(13)

Similarly, we substitute the squared hinge loss into the loss
function L(·) in Problem (8), and obtain:

wp=

m∑
i=1

Φi,p

 ni∑
j=1

αi
jy

i
jx

i
j+

n̂i∑
j′=1

α̂i
j′ ŷ

i
j′ x̂

i
j′

 , p = 1...m.

(14)

Given (13) and (14), we can compute the gradient in (6). In
case of the least-square loss, we have:

∇x̂i
j
l((wp)>xp

q ,y
p
q ) = 2((wp)>xp

q − ypq )xp
q

∂wp

∂x̂i
j

= 2((wp)>xp
q − ypq )xp

qα̂
i
jΦi,p. (15)

In case of the squared hinge loss, we have:

∇x̂i
j
l((wp)>xp

q ,y
p
q )

= 2(ypq (wp)>xp
q − 1)ypqxp

q

∂wp

∂x̂i
j

= 2(ypq (wp)>xp
q − 1)ypqxp

q ŷ
i
jα̂

i
jΦi,p. (16)



Experimental Results
In this section, we first evaluate PATOM in terms of conver-
gence and solution quality. Experimental results show that
PATOM converges to local optima in less than 10 iterations
and the attack strategies computed by PATOM significantly
outperform baselines. Second, we study the task relation-
ships under the data poisoning attacks and found that task
relationships are very sensitive to the attacks. We also found
that the tasks under attacking form strong correlations.

Datasets
We use three real-world datasets to validate our proposed
methods. The Landmine and the MNIST datasets are used
for classification tasks and Sarcos dataset is used for regres-
sion tasks. For each dataset, all data points are divided by the
maximum `2 norm among them, so that all data points are
within a `2-norm ball with diameter 1. We consider this ball
as the feasible region of the injected data in order to ensure
that the injected data and the clean data are at the same scale.
We use the area under the ROC curve (AUC) to evaluate the
learning performance for classification tasks, and the nor-
malized mean squared error (NMSE) for regression tasks.
The higher AUC corresponds to the better performance for
classification and the lower NMSE corresponds to the better
performance for regression. The detailed description of the
datasets are given below.

• Sarcos1 relates to an inverse dynamics problem for a
7 degrees-of-freedom SARCOS anthropomorphic robot
arm. The input is a 21-dimensional space that includes 7
joint positions, 7 joint velocities and 7 joint accelerations.
Each input instance is associated with 7 joint torques. Fol-
lowing previous work (Zhang and Yeung 2010), each task
is to learn a mapping from the 21-dimensional input space
to one of the 7 torques. The dataset contains 44,484 train-
ing examples and 4,449 test examples.

• Landmine2 consists of 29 tasks collected from various
landmine fields. A data point in each task is represented
by a 9-dimensional feature vector, and associated with
a corresponding binary label (“1” for landmine and “-
1” for cluster). The feature vectors are extracted from
radar images, concatenating four momentbased features,
three correlation-based features, one energy ratio feature
and one spatial variance feature. The tasks entail different
numbers of data points, varying from 89 to 138 examples.

• MNIST3 is a hand-written digit dataset with 10 classes.
We use the one-vs-the-rest strategy to decompose the
multi-class classification problem to 10 binary classifica-
tion problems, and treat each binary classification prob-
lem as a task. To form the training set for each task,
we randomly draw 300 data points of the designated
digits and assign label “+1” and draw an equal num-
ber of instances from other classes randomly and assign

1http://www.gaussianprocess.org/gpml/
data/.

2http://people.ee.duke.edu/˜lcarin/
LandmineData.zip.

3http://yann.lecun.com/exdb/mnist/.
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Figure 1: Convergence of PATOM.

label “-1”. The dataset contains 60,000 training exam-
ples and 10,000 test examples. We use principal compo-
nent analysis (PCA) to reduce the feature space to a 128-
dimensional space.

Evaluating Convergence of PATOM
Our first set of experiments study the convergence of
PATOM on Sarcos dataset and Landmine dataset, with re-
spect to regression tasks and classification tasks. On Sarcos
dataset, we randomly draw 300 training examples and 600
test examples from the associated training and test set. For
direct attacks, we select 3 tasks on Sarcos dataset and 15
tasks on Landmine dataset as the respective target tasks, and
set the attacking tasks the same as the target tasks. For in-
direct attacks, we use the same target tasks as in the direct
attack, and treat the rest of tasks as the attacking tasks. For
hybrid attacks, we randomly select the same number of at-
tacking tasks as in the indirect attack experiments from all
tasks. We set the step size η = 100 and the lower level prob-
lem parameters λ1 = λ2 = 0.1. The batch size is set to be
three times of the clean data. The number of injected data
points in each task is set to be 20% of the clean data.

Figure 1 shows the results of the convergence experiments
on the two datasets, where x-axis represents the number of
iterations in PATOM, and y-axis represents the NMSE av-
eraged over target tasks of Sarcos dataset and the AUC av-
eraged over target tasks on Landmine dataset, respectively.
We can see that for all the three kinds of attacks on the two
datasets, PATOM converges to local optima in less than 10
iterations, where at iteration 0 the injected data points are
randomly initialized. Since existing optimization techniques
cannot guarantee global optimal solutions for nonconvex
programs, all of the solutions we find are approximate. How-
ever, we can get an estimation of the global optimal solution
by selecting multiple start points and comparing the local
optima. In our experiments, we observe very similar local
optima values when choosing multiple start points. Based
on this observation, we run PATOM with one start point in
our remaining experiments.

Evaluating Solution Qualities
Our second set of experiments evaluates the performance of
MTRL under direct attacks and indirect attacks with respect
to different datasets. On each dataset, we select 4 differ-
ent pairs of target task set and attacking task set. Each pair
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Figure 2: Solution quality comparison. Each figure corresponds to a choice of pair (Ttar, Tatt) of the associated dataset. The
bold line (dashed line) with circle marker represents direct attacks (random direct attacks); the bold line (dashed line) with
square marker represents indirect attacks (random indirect attacks). The budget represents the ratio of the number of injected
data points to the number of clean data points.

(Ttar, Tatt) is chosen by randomly selecting half of tasks
to form Ttar and the rest of tasks to form Tatt. We have
|Ttar| = 4 and |Tatt| = 3 on Sarcos dataset, |Ttar| = 15
and |Tatt| = 14 on Landmine dataset, and |Ttar| = 5 and
|Tatt| = 5 on MNIST dataset. For a pair (Ttar, Tatt) of each
dataset, we compare the averaged NMSE or averaged AUC
over the target tasks under four kinds of attacks: direct at-
tacks, indirect attacks, random direct attacks and random in-
direct attacks. The last two kinds of attacks are treated as
baselines, where the injected data points are randomly cho-
sen. Figure 2 shows the results of quality comparison among
the four kinds of attacks. Some interesting findings include:

• Direct attacks are more effective than indirect attacks and
random attacks given the same budget. From Figure 2, we
can see that direct attacks significantly degrade the learn-
ing performance on all datasets. For example, on Sarcos
dataset, direct attacks with 30% malicious data injected
leads to about 50% higher averaged NMSE. However,
note that in some scenarios, attackers may have larger
budget for launching indirect attacks. Take the recom-
mender system for example, attackers can provide arbi-
trary number of training data through the malicious ac-
counts created by themselves. In such cases, indirect at-
tacks are also big threats to the learning system.

• Both direct attacks and indirect attacks computed by
PATOM significantly outperform random attacks, respec-

tively, which demonstrates that the real-world attackers
can do much better than just launching random attacks.

• Different choices of pairs (Ttar, Tatt) influence the at-
tacks’ performance. For example, we can see from the
second figure of the first row of Figure 2, the indirect
attacks lead to a higher loss than random direct attacks.
However, in the third figure of the first row, the random
direct attacks lead to a higher loss than indirect attacks.

• Indirect attacks almost have no effect on MNIST dataset.
Since we can easily learn good classifiers on MNIST
dataset using only hundreds of training examples, each
task does not need much help from other tasks and the task
correlations are relatively low. Consequently, it is hard for
the attacker to launch effective indirect attacks by exploit-
ing task relationships.

• The AUC slightly increases after budget=0.1 on MNIST
dataset. Since our formulation maximizes the empirical
loss on the training data but the AUC is computed based
on the test data, we think the AUC on test data reaches the
lower bound near budget=0.1 and slightly increases after
that due to the distribution discrepancy between training
data and test data. The intuition behind this is similar to
‘overfitting’ in the convention of machine learning.
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Figure 3: Visualization of task correlations under attacks. (a) - (d) are the results on Sarcos dataset and (e) - (f) are the results on
Landmine dataset. The color of each grid represents the value of the correlation matrix, ranging from −1 (blue) to +1 (yellow)
as shown in the color bar at the right side of each figure. The first figure of each row is the ground-truth task correlations learned
with clean data. The target task set is set to be Ttar = {T1, T2, T3} on Sarcos dataset and Ttar = {T1, ..., T15} for Landmine
dataset and remains the same under different attacks.

Evaluating Task Relationships

Our third set of experiments study the task relationships un-
der different attacks. We fix the target task set as Ttar =
{T1, T2, T3} on Sarcos dataset and Ttar = {T1, ..., T15} on
Landmine dataset. Then, for each dataset, we select three
different attacking task sets and compute three hybrid at-
tacks. We set the amount of injected data to be 30% of the
clean data with respect to each task. We convert the learned
covariance matrices to correlation matrices and visualize
them in Figure 3. Since the Sarcos dataset has 7 tasks and
the Landmine dataset has 29 tasks, the learned correlation
matrix is a 7 × 7 symmetric matrix on Sarcos dataset and
29× 29 symmetric matrix on Landmine dataset.

Figure 3 shows that on both datasets the ground-truth task
correlations are significantly subverted by the data poisoning
attacks. For example, in Figure 3(a), the ground-truth corre-
lation between tasks 2 and 3 is −0.99, which suggests that
the two tasks are highly negatively correlated. However, in
Figure 3(b), the correlation between tasks 2 and 3 becomes
0.99, meaning that the two tasks are highly positively cor-
related. Similar results can be found on Landmine dataset.
Moreover, from Figures 3(b) - 3(d) and 3(f) - 3(h), we ob-
serve that the attacking tasks are usually highly positive cor-
related, in contrast with other tasks. This suggests that the
machine learner needs to be aware of a group of tasks that
form strong local correlations.

Conclusion and Future Work
This paper studies the data poisoning attacks on MTRL
models. To the best of our knowledge, we are the first to
study the vulnerability of MTL. We categorize the data poi-
soning attacks into direct attacks, indirect attacks and hy-
brid attacks based on the real-world scenarios. We propose a
bilevel formulation that includes the three kinds of attacks to
analyze the optimal attack problems. We propose PATOM,
a stochastic gradient ascent based approach that leverages
the optimality conditions of MTRL to compute the gradi-
ents. We evaluate PATOM in terms of convergence and so-
lution quality on real-world datasets. Experimental results
show that PATOM converges to local optima in less than
10 iterations and the attack strategies computed by PATOM
significantly outperform baselines. We also study the task
correlations under data poisoning attacks.

The ultimate goal of studying data poisoning attacks is to
develop effective defense strategies against such attacks. In
future work, we will consider two classes of potential de-
fense strategies for protecting MTL: data sanitization and
improving the robustness of MTL. First, as shown in our
experiments of evaluating task relationships, the tasks un-
der attacking show a strong correlation with only 30% data
injected. Therefore, the machine learner can examine the
data from tasks that form strong local correlations, per-
haps through human verifications. Moreover, once a task is
demonstrated to be malicious, the learner can examine the
tasks that strongly correlate to it, which will significantly



reduce the learner’s effort in examining the data. Second,
improving the robustness of MTL could also be an effective
approach to defend against data poisoning attacks. MTL ex-
ploits the task relatedness to improve the performance of in-
dividual tasks, where such relatedness can also be exploited
by the attacker to launch indirect attacks. A possible ap-
proach to improve the robustness of MTL is to differentiate
the helpful relatedness and the harmful task relatedness, so
that we can preserve the helpful relatedness and reduce the
harmful relatedness during learning.
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